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Abstract

Cylindrical shell filled with hot liquid is analyzed for buckling and vibration behavior using semi-
analytical finite element method. A parametric study is conducted on a 316L stainless-steel cylinder filled
with hot liquid. The temperature distribution in shell domain is obtained by using axisymmetric eight-node
ring finite elements, capable of taking axial variation of temperature into account. Three-node ring elements
are used for buckling and vibration analysis, formulated using semi-analytical finite element method.
Thermal stress resultants and moment resultants in the shell are estimated and static buckling analysis is
carried out to find the buckling temperature of the container for different levels of filling of liquid and for
two different boundary conditions. Free vibration analysis carried out by considering initial stress effect
and added mass effect due to hot liquid. Two different geometries are considered to study the effect of
geometry on buckling temperature.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Metallic containers find their application in nuclear industry for storing hot liquid for example,
container vessels for storing liquid sodium in Liquid Metal Reactors (LMR) [1]. One among many
of the primary requirements is the assessment of the buckling temperature and the natural
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

k thermal conductivity of the material
_q internal heat generated per unit volume
T temperature inside the element
T0 specified temperature on the surface S1

lr; lz directional cosines in respective direc-
tions

q,h specified heat flux and heat transfer
coefficients on the surface S2

½Ke
1� element conductivity matrix

½Ke
2� element convective matrix

½Ke
3� element capacitance matrix

r density of the material of the structure

½Pe
1� load vector due to _q

½Pe
2� load vector due to q

½Pe
3� load vector due to h

T1 ambient temperature
l element edge length
C 2p if m ¼ 0

p if m � 0
½Km� system stiffness matrix for harmonic ‘m’
½KGm� system geometric stiffness matrix for

harmonic ‘m’
½Mm� system mass matrix for harmonic ‘m’
½Mam� system added mass matrix for harmonic

‘m’
l buckling parameter
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frequencies of the container. The container in the form of a cylinder is a popular choice. A
detailed discussion on thermal buckling of thin cylindrical shells and columns subjected
to uniform temperature rise, large temperature variation and time effects of creep can be
found in the article by Hoff [2]. Hoff’s paper also presents a survey of the solutions to
problems falling under these heading. Abir and Nardo [3] considered the problem of
thermal buckling of thin circular cylinders when there is a temperature gradient in circum-
ferential direction. Lu and Chang [4] have studied the thermal buckling of conical shells
when temperature varies along the generator. Thornton [5] has compiled an exhaustive
review of thermal buckling of plates and shells. Amabili [6] studied analytically, the free
vibrations of a circular cylindrical tank partially filled with inviscid incompressible fluid.
Jayaraj et al. [7] proposed a new formulation using semi-analytical finite element method
for elastic shells conveying fluids. To the best of author’s knowledge no study has been
reported on the buckling and vibration of cylindrical shells filled with hot liquids. In this present
paper, thermal buckling temperatures and free vibration characteristics of a 316L stainless-steel
cylinder filled with hot liquid are estimated taking into account the effect of thermally induced
initial stresses, and the added mass effect due to the liquid present inside the container. The
dimensions of the cylinder used for the analysis are same as those reported in the work of Lee et
al. [1]. The analysis is based on decoupled thermo-mechanical and coupled fluid–structure
interaction. First-order shear deformation theory is used to formulate structural finite element [8].
Axisymmetric Fourier heat conduction equation in cylindrical coordinates forms the basis for
finite element formulation for evaluating temperature distribution. Eight-node axisymmetric
elements are used in the shell domain for evaluating the temperature distribution along the length
and thickness of the shell. The effect of thermally induced pre-stresses on the buckling and
vibration behavior are studied incorporating the geometric stiffness matrix formulated by
Ganesan and Kadoli [9].

The fluid domain analysis follows from Ross [10]. Numerical studies are carried out on two
different shells having two different l/r ratios. The buckling behavior is investigated with respect
to the amount of hot liquid contained in the cylindrical shell. Two different boundary conditions
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are considered for buckling analysis, and the causes for buckling failure are examined. Vibration
studies are carried out on the cylinder with liquid level as a parameter. The effect of liquid present
inside the container on the frequency behavior is taken care by added mass matrix from Ross [10].
The lowest-frequency mode and the lowest buckling modes are found to be invariant with respect
to the level of filling.
2. Semi-analytical finite element formulation for buckling and free vibration analysis of hot liquid-

filled shell of revolution

In the present study, the buckling temperatures and the natural frequencies of the shell are
solved using initial stability equation and equation of motion framed using the stiffness
matrix, geometric stiffness matrix–mass matrix and added mass matrix. In the sections to follow,
a detailed discussion on the semi-analytical finite element formulation for heat conduction
analysis, buckling eigenvalue problem and free vibration equation of motion is presented. The
buckling and frequency analyses are carried out by solving the corresponding eigenvalue
problems.

2.1. Finite element formulation for temperature evaluation

The Fourier heat conduction equation for axisymmetric steady-state heat conduction with
isotropic material properties is given by

1

r

q
qr

rk
qT

qr

� �
þ

q
qz

rk
qT

qz

� �� �
þ r _q ¼ 0 (1)

with the boundary conditions

T ¼ T0ðr; zÞ on surface S1; and

k
qT

qr
lr þ k

qT

qz
lz þ q þ hðT 	 T1Þ ¼ 0 on surface S2;

where the surfaces S1 is the surface on which temperature is specified and S2 is a surface on
which convection and flux are specified. The problem defined in Eq. (1) along with the
associated boundary conditions can be represented by equivalent functional expression [11]
as follows:
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Eq. (2) represents the variational expression of the governing equation stated in Eq. (1). The
natural boundary condition (convection and flux) are contained in the variational expression
itself. The essential boundary conditions (temperature specification) are to be applied after
forming the global finite element matrices. The temperature T can be expressed in terms of nodal
temperatures Ti by using shape functions Ni as T ¼

Pp
i¼1 TiNi; where p is the number of nodes

per element. By substituting the expression for T in the functional expression (2) and minimizing
the functional with respect to the nodal variables Ti, the following elemental matrix equation can
be obtained:

½Ke
1�T

e þ ½Ke
2�T

e ¼ ½Pe�; where ½Pe� ¼ ½Pe
1� þ ½Pe

2� þ ½Pe
3�: (3)

For a shell of revolution neglecting heat transfer from the edges of the shell and transforming r, z
into natural coordinates the above matrices will be

½Ke
1� ¼ 2p

Z Z
½B�T½K �½B�rðx; ZÞjJjdxdZ;

½Ke
2� ¼ 2p

Z
h½N�T½N�rðx; ZÞ

l

2
dx;

½Pe
1� ¼ 2p

Z Z
_q½N�Trðx; ZÞjJjdxdZ;

½Pe
2� ¼ 2p

Z
q½N�Trðx; ZÞ

l

2
dx;

½Pe
3� ¼ 2p

Z
hT1½N�Trðx; ZÞ

l

2
dx:

rðx; ZÞ ¼
Pn

i¼1 Niri is the radius at the Gaussian point ðx; ZÞ: The final system matrices can be
obtained by assembling the element matrices. Eight-noded ring elements with one dof per node
are formulated for descretizing the shell domain for temperature evaluation. The element
geometry and the directions of natural coordinates ðx; ZÞ are depicted in Fig. 1.

2.2. Finite element formulation for liquid-filled container considering initial stress effect due to
temperature

2.2.1. First-order shear deformation theory (FSDT)
In the FSDT in contrast to thin shell theory, the thickness of the shells is comparable to the

least radius of curvature. The geometry of a shell of revolution is depicted in Fig. 2. Rao [8]
studied the dynamic and static characteristics of laminated beams and shells of revolution and
compares different order shear deformation theories.

The surface generated by revolving the generating curve is the reference surface and the
thickness coordinate is measured from this surface along the normal to the surface at a given
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point. In case of shell of uniform thickness this surface can be taken to be the middle surface
where (z ¼ 0) and the thickness coordinates of top and bottom surfaces are given by z ¼ t/2 and
	t/2, respectively (t is the shell thickness.). In this theory the displacement field in the shell domain
is expressed in terms of the middle surface displacements u0, v0, and w0 (displacements along the
s; y; and z directions, respectively) and the rotations of the normal to the middle surface of the
shell, Cs; Cy (rotations in the s and y; directions, respectively). The displacements u, v, and w in
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the s; y; and z directions are given by

uðs; y; zÞ ¼ u0ðs; yÞ þ zCs;

vðs; y; zÞ ¼ v0ðs; yÞ þ zCy;

wðs; y; zÞ ¼ w0ðs; yÞ; ð4Þ

where z is the radial coordinate measured from the middle surface of the shell.
The strain-displacement relations according to FSDT are given by

�ss ¼
1

A1
ð�0ss þ zk1

s Þ;

�yy ¼
1

A2
ð�0yy þ zk1

yÞ;

gsy ¼
1

A1A2
ðg0sy þ zk1

syÞ;

gyz ¼
1

A2
g0yz;

gsz ¼
1

A2
g0sz; ð5Þ

A1 ¼ 1þ z=Rf and A2 ¼ 1þ z=Ry:
Ry and Rj are the radii of curvatures in respective directions. �ss; �yy; gsy; gyz; gsz are the strains at

any point in the shell, expressed in terms of the strains in the middle surface of the shell
�0ss; �

0
yy; g

0
sy; g

0
yz; g

0
sz and the change in curvatures k1

s ; k
1
y;k

1
sy:
2.2.2. Structural stiffness matrix

The total strain energy U, in the continuum is

U ¼ U1 þ U2: (6)

U1 is the conventional strain energy due to deformation of the structure and U2 is strain energy
due to initial stresses in the structure. The structural stiffness matrix is obtained from the
expression for U1 given by

U1 ¼
1

2

Z
v

f�sssss þ �yysyy þ gyztyz þ gsztsz þ gsytsygdV

¼
1

2

Z
v

f�gTfsgdV ; ð7Þ

f�gT ¼ f�ss �yy gyz gsz gsyg are strains

fsgT ¼ fsss syy tyz tsz tsyg are the corresponding stresses in respective directions:

Expressing the strains and stress in terms of middle surface strains �0ss; �
0
yy; g

0
sy; g

0
yz; g

0
sz; and the

change in curvatures k1
s ;k

1
y; k

1
sy; and then performing explicit integration in z direction, the
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expression for U1 becomes

U1 ¼
1

2

Z
A

f�0g
TfN̂gdA:

f�0g
T and fN̂gT are the generalized strain vector and array of stress resultants, respectively,

defined as

f�0g
T ¼ f�0ss �

0
yy g

0
sy k

1
s k

1
y k

1
sy g

0
sz g

0
yzg;

fN̂gT ¼ fNss Nyy Nsy Mss Myy Msy Qs Qyg:

The stress resultants fN̂g can be expressed in terms of generalized strains as

fN̂g ¼ ½D�f�0g:

½D� is the constitutive matrix. In the semi-analytical finite element method middle surface
displacements u0, v0, and w0 and the rotations Cs; and Cy are expanded in Fourier series in
circumferential direction as follows:

u0

v0

w0

Cs

Cy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼
X1
m¼0

cos my 0 0 0 0

0 sin my 0 0 0

0 0 cos my 0 0

0 0 0 cos my 0

0 0 0 0 sin my

2
6666664

3
7777775

u0m

v0m

w0m

Csm

Cym

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(8)

‘m’ stands for mth circumferential harmonic.
Substituting the above expression (8) in the expression for f�0g given in Ref. [8] and by making

use of shape functions [8] the following expression can be obtained:

f�0g ¼ ½B�fdg: (9)

½B� is the strain-displacement matrix. The matrix fdg will be fdg ¼ ½½d1� ½d2� ½d3��
T; ½di� ¼

ðu0i v0i w0i Csi CyiÞ
T i ¼ 1; 2; 3 are the dof corresponding to node i. The expression for stiffness

matrix is given by

½K
e � ¼

Z
A

½B�T½D�½B�dA:

By carrying explicit integration in y direction, each harmonic can be decoupled. The elemental
stiffness matrix for harmonic ‘m’ is given by

½K
em� ¼ C

Z
x
½Bm�

T½D�½Bm�jJjdx; (10)

C ¼ 2p if m ¼ 0;

¼ p if m � 0;
jJj is the jacobian

and the expressions for ½Bm�; ½D� are given in Ref. [8].
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2.2.3. Mass matrix

The mass matrix is obtained from the kinetic energy expression for the shell continuum.
The kinetic energy

KE ¼
r
2

Z
A

f _deg
T½Me�f

_degdA: (11)

Expressing the expression (11) in terms of generalized coordinates, making use of the shape
functions [8] and by carrying explicit integration in the thickness direction the kinetic energy will
become

KE ¼
1

2

Z
A

f _deg
T½Me�f

_degdA:

The elemental mass matrix ½Me� is given by

½Me� ¼ r
Z

A

N̄
T

N̄ dA:

By carrying explicit integration in y direction, each harmonic can be decoupled. The elemental
mass matrix for harmonic ‘m’ is given by

½Mem� ¼ rC

Z
x
½N̄m�

T½N̄m�jJjdx; (12)

½N̄m� is the shape function matrix.

2.2.4. Thermal load vector
The elemental thermal load vector for harmonic ‘m’ can be written as

½Fe
Th� ¼ C

Z
x
½Bm�

T½D̄�½�i
0�jJjdx: (13)

½�i
0� are the strains due to free thermal expansion. By solving the problem ½Km�½di� ¼ ½FTh�; the

initial nodal displacements ½di� are obtained. By using ½di� the initial thermal stress resultants are
found for generating the geometric stiffness matrix.

2.2.5. Geometric stiffness matrix
The expression for geometric stiffness matrix can be obtained from the expression for U2

given by

U2 ¼
1

2

Z
V

ð�n
ss �n

yyÞ
si

ss ti
sy

ti
sy si

yy

" #
�n

ss

�n
yy

 !
dV ; (14)

�n
ss; �

n
yy are the nonlinear strains and si

ss; s
i
yy; t

i
sy are the initial stresses. These initial stresses can be

found by solving static problem with thermal load. U2 can be written in terms of initial stress
resultants and generalized nonlinear strains. Then the expression for U2 becomes

U2 ¼
1

2

Z
A

fdgT½KG� fdgdA;
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½KG� is the geometric stiffness matrix. The expression for ½KG� is given by

Ke
G

� �
¼

Z
A

B
_h iT

D
_h i

B
_h i

dA:

½B
_
� is the nonlinear strain-displacement matrix, formed by making use of the nonlinear strains.

Due to the orthogonality property the matrix ½KG� can be decoupled for each harmonic. The
geometric stiffness matrix for harmonic ‘m’ can be written as

Ke
Gm

� �
¼ C

Z
x

B
_

m

h iT
D
_h i

B
_

m

h i
jJjdx: (15)

The expressions for ½Ke
Gm�½D

_
� and ½B

_

m� are given in Ref. [9].

2.2.6. Added mass matrix

Due to the liquid present in the container the frequency of the structure decreases. The final
system ‘added mass’ matrix for harmonic ‘m’ is given by Ross [10].

½Ma� ¼
C

rf

½Sm�
T½Hm�

	1½Sm�: (16)

½Sm� and ½Hm� are the interaction matrix and compression energy matrix, respectively. The
elemental interaction matrix ½Se

m� and elemental compression energy matrix ½He
m� are given by

½Se
m� ¼ Crf

Z
s

½N�T½N̄�dS;

½He
m� ¼ C

Z
A

B
*h iT

B
*h i

dA:

All the other system matrices can be obtained by assembling the elemental matrices.
3. Results and discussion

A finite element computer code is developed using eight-node axisymmetric ring finite elements
for evaluating temperature distribution in the shell domain. The code developed is validated for
temperature evaluation with the example in Ref. [12]. For buckling and vibration analysis code
developed by Ganesan and Kadoli [9] is used, which is already validated.

3.1. Validating the thermal code

The code is validated for two different thickness of a long hollow circular cylinder, to study the
effect of thickness of the shell on the temperature distribution across the thickness of the shell.
Consider an infinitely long hollow circular cylinder as shown in the Fig. 3(a) the inside surface of
the tube has a distributed heat flux of q ¼ 200 acting on it, where as the outside surface is
subjected to convection with convective heat transfer coefficient b ¼ 5 and T1 ¼ 30: The thermal
conductivity of the material of the tube is k ¼ 3: As the temperature does not vary axially or
circumferentially, FE solution is obtained by using just one element in axial direction and ‘8’
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Fig. 3. (a) Infinitely long hollow cylinder and (b) finite element mesh used for modeling.
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eight-node elements in thickness direction as shown in the Fig. 3(b). Here, we consider two
different tube thicknesses. (a) t ¼ 18ðrm=t ¼ 0:55556Þ and (b) t ¼ 0:1ðrm=t ¼ 100Þ: Any consistent
system of units can be made use of.

The analytical solution for the above problem is given by Surana and Orth [12] Eq. (17)

ðTÞtheory ¼
qri

K
ln

r0

r

� �
þ

k

br0

� �
þ T1: (17)

The plots shown in the Fig. 4 compare the finite element and analytical solutions for the two
different cases considered. It can be seen that there is a good agreement between FE and analytical
solutions. Hence, computer code developed for temperature evaluation is validated. It can be seen
that the variation of the temperature across the thickness is second order in case of larger wall
thicknesses and it is linear in case of shells having thin walls.

3.2. Buckling analysis

For carrying out the buckling analysis and estimating the buckling temperature, the
temperature distribution in the shell domain is evaluated first. Then the induced thermal stresses
are calculated to evaluate the geometric stiffness matrix. The following eigen value problem:

½½Km� þ l½KGm��½X � ¼ 0 (18)

is solved for evaluating the buckling temperature. The dimensions of the cylinder used for the
analysis are shown in Fig. 5(a) along with the associated thermal boundary conditions. The
cylinder is filled with hot liquid sodium at 550 1C up to the level indicated in the figure. On the
outer and inner (surface above liquid interface) surfaces of the shell, a convective heat transfer
coefficient of 6.5W/m2 and an ambient temperature of 15 1C is assumed. Constant temperature
boundary condition (equal to temperature of the liquid inside) will prevail on the surface in
contact with the liquid. Fig. 5(b) shows the finite element mesh used for evaluating the
temperature. Fifty two elements are used in axial direction, and only one element in thickness
direction. For the materials having high thermal conductivity, such as a one used in the present
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analysis almost constant temperature prevails along the thickness direction. So nodal
temperatures on the middle line of the thickness of the shell are used for further calculations.

Fig. 6 shows the temperature distribution along the length of the shell for four levels of filling of
hot liquid sodium at 550 1C. The distribution has a break at the liquid level, up to which it remains
constant at the liquid temperature. In the remaining portion of the length there is a second-order
variation of temperature. The distribution curve becomes asymptotic at the end, and tends to a
constant value. The value of this constant depends on the level of the liquid. Since shell is very thin
(3mm) the temperature drop across the thickness will be negligible for the case of thermal
boundary conditions we considered. For other boundary conditions (say for example temperature
specification on outer surface instead of convection) this assumption may not be valid.

Fig. 7 shows the finite element discretization of the shell domain for buckling analysis. Three-
node ring elements are used for the shell domain.
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The nodal temperatures obtained from the previous calculations (at a reference liquid
temperature ðT ref Þ) are used for the buckling and vibration analysis. The thermally induced pre-
stresses hence the geometric stiffness matrix ½KG� are evaluated at this liquid temperature. For the
evaluation of buckling temperature. The eigen value problem (18) is solved for a reference
temperature T ref and the value Tb ¼ l  T ref gives the buckling temperature of the shell. Table 1
lists the buckling temperatures of the cylinder for four different levels of liquid filling for
clamped–clamped boundary condition and for different circumferential modes. All the dof,
namely displacements u0, v0, and w0 and the rotations Cs; and Cy at both the ends of the shell are
constrained. As the level of the liquid increases the value of buckling temperature decreases as
expected. The mode (9, 1) is the lowest buckling temperature mode.

It is necessary to investigate the determining factor for the buckling failure of the system. Fig. 8
shows the axial and hoop stress resultants induced in the cylinder for four different levels of filling
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for clamped–clamped boundary condition. The stress resultants are calculated at the buckling
temperature of the liquid for the given level of filling. It can be seen that at buckling temperature
the axial stress resultant reaches a constant value for all the liquid level and buckling is due to
axial compression.

Table 2 lists the minimum buckling temperatures and corresponding circumferential modes for
four different levels of liquid filling and for clamped-simply supported boundary condition.
Displacements v0, and w0 and the rotation Cy are constrained at the simply supported edge. It can
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Table 1

Buckling temperatures of a clamped–clamped container

Buckling mode Tb (1C) for fraction filling

0.25 0.50 0.75 1.0

1 1014 610 448 391

2 1012 609 447 391

3 1010 607 446 390

4 1007 605 444 389

5 1004 603 442 387

6 1000 601 441 385

7 983 597 438 383

8 955 591 435 380

9 935 580 430 375

10 936 585 436 382

11 950 611 457 401

12 975 647 488 429

13 1006 685 524 463

14 1041 726 564 500

15 1078 768 605 540

Radius ¼ 0.3m and length ¼ 0.5m.
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Fig. 8. Thermal stress resultants induced in the cylinder with clamped–clamped boundary condition at buckling

temperature for fraction filling (a) 0.25 (b) 0.50 (c) 0.75 (d) 1.00.
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Table 2

Buckling temperatures of a clamped-simply supported cylindrical shell

Lowest buckling mode Tb (1C) for fraction filling

0.25 0.50 0.75 1.0

(20,1) 2259 2236 2236 2236

Radius ¼ 0.3m, length ¼ 0.5m.

Table 3

Buckling temperatures of a clamped-simply supported cylindrical shell

Lowest buckling mode Tb (1C) for fraction filling

0.50 1.0

(20,1) 2206.9580 2206.9580

Radius ¼ 0.3m, length ¼ 1.5m.
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be observed that buckling temperature is almost invariant with the level of hot liquid. Table 3
shows the buckling temperature for a cylinder having the same radius as the one considered but
having a length of 1.5m. For this cylinder buckling temperatures are evaluated for two levels of
filling for clamped-simply supported boundary condition. Again there is no change in buckling
temperatures is observed with the change in the level of liquid filling as can be seen from Table 3.

Fig. 9 shows the stress distributions along the length of the shell with clamped-simply supported
boundary condition, for two different levels of filling. The temperature of the liquid inside is
550 1C. The plots show the same value of maximum compressive hoop stress resultant at the
clamped end for both the cases. At the other end the value of this stress resultant is less. Thus,
buckling is due to hoop compression for this boundary condition.

3.3. Frequency behavior

Fig. 10 shows the finite element mesh of the hot liquid-filled container for frequency analysis.
Eight-node ring elements are used for the fluid domain and three-node ring elements are used for
discretizing the structural domain. A similar study on fluid-filled cylinders was done by Amabili
[13] considering the effect of free surface waves and the sloshing modes can be captured by such an
approach. In contrast, in the present study rigid free surface boundary condition is assumed.

For analyzing the frequency behavior of the system considered, it is important to consider two
effects which alter the natural frequencies of the system namely the ‘added mass effect’, due to the
liquid present inside, and the ‘initial stress effect’ due to the induced thermal stresses in the
container because of the high temperature of the liquid inside. The added mass adds to the system
mass matrix in the form of added mass matrix ½Ma�; and lessens the effective frequency. Initial
stress effect is accounted by the geometric stiffness matrix ½KG�; and the frequency behavior is
altered due to the altered stiffness. The eigen value problem given by Eq. (19) is solved for
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Fig. 9. Thermal stress resultants induced in the cylinder with clamped simply supported boundary condition at 550 1C

for fraction filling (a) 1 (b) 0.5.
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obtaining the natural frequencies o and the natural modes.

½½½Km� þ ½KGm�� 	 o2½½Mam� þ ½Mm���½X � ¼ 0: (19)

Fig. 11(a) and (b) shows the natural frequency variation of the first axial mode for different
circumferential modes with temperature. It can be observed that (6,1) is the lowest-frequency
mode initially. As the temperature increases there is a cross over of (6,1) and (9,1) modes after
which (9,1) becomes lowest-frequency mode for all the levels of filling. Finally the shell buckles in
(9,1) mode at a temperature where the natural frequency will become zero. This is the buckling
temperature. As the temperature of the liquid increases the natural frequency of the shell goes on
decreasing due to increase in its ‘folding’ tendency. It should be noted that the lowest frequency
mode need not coincide with the first buckling mode. For a given boundary condition it is
interesting to note that, for any level of liquid filling the buckling occurs in the same mode. The
plots 3.9(c) and (d) shows the variation of frequency considering only the effect of thermally
induced pre-stresses.
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Fig. 10. Finite element discretization of the liquid-filled container for frequency analysis.
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Fig. 12(a) shows the variation of natural frequency of (9,1) mode with temperature. It can be
observed that the combined added mass and initial stress effects are more in initial levels of filling.
This is due to the fact that temperature profiles along the length of the shell do not deviate much
from one another at higher levels of filling. So are the stress distributions, and so is the frequency
behavior. The frequency in the (9,1) mode goes on decreasing with temperature and becomes zero
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at buckling temperature Fig. 12(b) compares the effect of initial stress effect alone (w/o aadm) and
the actual behavior (addm) of the shell.
4. Conclusions

A computer program is developed by making use of semi-analytical finite element method,
capable of taking axisymmetric temperatures and temperatures may vary in axial direction. The
code can take care of transient behavior of the system also. Buckling temperatures are evaluated for
the containers for different levels of filling of the hot liquid and causes for the buckling failures were
investigated. The changed natural frequencies of the shell are calculated due to added mass effect
and initial stress effect. The effects of added mass and initial stresses on the first buckling mode are
studied. The nature of the stress resultants is compared for two different boundary conditions.
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